Remark 11.5.0.121 (Two-out-of-Six). Let $F: \operatorname{\mathcal{A}}\rightarrow \operatorname{\mathcal{B}}$, $G: \operatorname{\mathcal{B}}\rightarrow \operatorname{\mathcal{C}}$, and $H: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be functors between $\infty $-categories. If $G \circ F$ and $H \circ G$ are equivalences of $\infty $-categories, then $F$, $G$, and $H$ are equivalences of $\infty $-categories.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$