Proposition 4.5.3.8. Let $f: X \rightarrow Y$ be a morphism of simplicial sets. The following conditions are equivalent:
- $(1)$
The morphism $f: X \rightarrow Y$ is a categorical equivalence. That is, for every $\infty $-category $\operatorname{\mathcal{C}}$, precomposition with $f$ induces a bijection
\[ \pi _0( \operatorname{Fun}(Y, \operatorname{\mathcal{C}})^{\simeq } ) \rightarrow \pi _0( \operatorname{Fun}(X, \operatorname{\mathcal{C}})^{\simeq } ). \]- $(2)$
For every $\infty $-category $\operatorname{\mathcal{C}}$, precomposition with $f$ induces a homotopy equivalence of Kan complexes $\operatorname{Fun}(Y, \operatorname{\mathcal{C}})^{\simeq } \rightarrow \operatorname{Fun}(X, \operatorname{\mathcal{C}})^{\simeq }$.
- $(3)$
For every $\infty $-category $\operatorname{\mathcal{C}}$, precomposition with $f$ induces an equivalence of $\infty $-categories $\operatorname{Fun}(Y, \operatorname{\mathcal{C}}) \rightarrow \operatorname{Fun}(X, \operatorname{\mathcal{C}})$.