Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 4.5.3.17 (Axioms for Categorical Equivalence). The collection of categorical equivalences of simplicial sets has the following properties:

$(A)$

If $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ are $\infty $-categories, then a functor $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ is a categorical equivalence if and only if it is an equivalence of $\infty $-categories (Example 4.5.3.3).

$(B)$

Every inner anodyne morphism of simplicial sets is a categorical equivalence (Corollary 4.5.3.14).

$(C)$

If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ have the property that two of the morphisms $f$, $g$, and $g \circ f$ are categorical equivalences, then so is the third (Remark 4.5.3.5).

In fact, the collection of categorical equivalences is characterized by assertions $(A)$, $(B)$ and $(C)$. Let $f: X \rightarrow Y$ be a morphism of simplicial sets. Invoking Proposition 4.1.3.1 twice, we can construct a commutative diagram of simplicial sets

\[ \xymatrix@R =50pt@C=50pt{ X \ar [r]^-{u} \ar [d]^{f} & \operatorname{\mathcal{C}}\ar [d]^{F} \\ Y \ar [r]^-{v} & \operatorname{\mathcal{D}}, } \]

where $u$ and $v$ are inner anodyne and $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ are $\infty $-categories. It follows from $(A)$, $(B)$ and $(C)$ that the morphism $f$ is a categorical equivalence if and only if the functor $F$ is an equivalence of $\infty $-categories.