Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 4.4.5.3. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $B$ be a simplicial set, and let $A \subseteq B$ be a simplicial subset. Then the restriction map $\operatorname{Fun}(B, \operatorname{\mathcal{C}}) \rightarrow \operatorname{Fun}(A, \operatorname{\mathcal{C}})$ is an isofibration of $\infty $-categories.

Proof. Apply Proposition 4.4.5.1 in the special case $\operatorname{\mathcal{D}}= \Delta ^0$. $\square$