Remark 4.5.5.9. Let $q: X \rightarrow S$ be a morphism of simplicial sets. Then $q$ is an isofibration if and only if the opposite morphism $q^{\operatorname{op}}: X^{\operatorname{op}} \rightarrow S^{\operatorname{op}}$ is an isofibration.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$