Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 4.5.8.6 (Functoriality). The blunt join construction $(X,Y) \mapsto X \diamond Y$ determines a functor $\diamond : \operatorname{Set_{\Delta }}\times \operatorname{Set_{\Delta }}\rightarrow \operatorname{Set_{\Delta }}$. Moreover:

  • For fixed $X$, the functor

    \[ \operatorname{Set_{\Delta }}\rightarrow \operatorname{Set_{\Delta }}\quad \quad Y \mapsto X \diamond Y \]

    preserves monomorphisms, filtered colimits and pushout diagrams.

  • For fixed $Y$, the functor

    \[ \operatorname{Set_{\Delta }}\rightarrow \operatorname{Set_{\Delta }}\quad \quad X \mapsto X \diamond Y \]

    preserves monomorphisms, filtered colimits, and pushout diagrams.