Example 4.6.4.10. Let $\operatorname{\mathcal{C}}$ be a simplicial set containing vertices $X$ and $Y$, which we identify with morphisms of simplicial sets $X,Y: \Delta ^{0} \rightarrow \operatorname{\mathcal{C}}$. Then the simplicial set $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$ of Construction 4.6.1.1 is the oriented fiber product $\{ X\} \operatorname{\vec{\times }}_{\operatorname{\mathcal{C}}} \{ Y\} $.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$