Corollary 4.6.8.8. Let $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ be locally Kan simplicial categories, let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a simplicial functor, and let $\operatorname{N}_{\bullet }^{\operatorname{hc}}(F): \operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{D}})$ be the induced functor of $\infty $-categories. Then:
- $(1)$
The functor $\operatorname{N}_{\bullet }^{\operatorname{hc}}(F)$ is fully faithful (in the sense of Definition 4.6.2.1) if and only if the simplicial functor $F$ is weakly fully faithful (in the sense of Definition 4.6.8.7).
- $(2)$
The functor $\operatorname{N}_{\bullet }^{\operatorname{hc}}(F)$ is essentially surjective (in the sense of Definition 4.6.2.12) if and only if the simplicial functor $F$ is weakly essentially surjective (in the sense of Definition 4.6.8.7).
- $(3)$
The functor $\operatorname{N}_{\bullet }^{\operatorname{hc}}(F)$ is an equivalence of $\infty $-categories (in the sense of Definition 4.5.1.10) if and only if $F$ is a weak equivalence of simplicial categories (in the sense of Definition 4.6.8.7).