Remark 5.2.6.9. Let $\operatorname{\mathcal{C}}$ be a category, let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set}$ be a functor, and let $\int _{\operatorname{\mathcal{C}}} \mathscr {F}$ denote the category of elements of $\mathscr {F}$ (Construction 5.2.6.1). Then the forgetful functor $\int _{\operatorname{\mathcal{C}}} \mathscr {F} \rightarrow \operatorname{\mathcal{C}}$ is a left covering functor, in the sense of Definition 4.2.3.1. This follows from the pullback diagram
of Remark 5.2.6.6, together with Remark 4.2.3.6 and Example 4.2.3.3. We will see in ยง5.2.7 that the converse is also true: for every left covering functor $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$, there exists a functor $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set}$ and isomorphism $\operatorname{\mathcal{E}}\simeq \int _{\operatorname{\mathcal{C}}} \mathscr {F}$ which is compatible with the functor $U$ (Corollary 5.2.7.5). By virtue of Proposition 5.2.6.8, the functor $\mathscr {F}$ is unique up to canonical isomorphism.