Example 11.10.3.10. Let $\operatorname{\mathcal{C}}$ be a category and let $\mathscr {F}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \mathbf{Cat}$ be a unitary lax functor. Then the forgetful functor $\int ^{\operatorname{\mathcal{C}}} \mathscr {F} \rightarrow \operatorname{\mathcal{C}}$ is a locally cartesian fibration (see Example 11.10.3.7). Similarly, if $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \mathbf{Cat}^{\operatorname{c}}$ is a unitary lax functor, then the forgetful functor $\int _{\operatorname{\mathcal{C}}} \mathscr {F} \rightarrow \operatorname{\mathcal{C}}$ is a locally cocartesian fibration.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$