Proposition 5.2.1.3. Let $q: X \rightarrow S$ be an inner fibration of simplicial sets and let $Y \subseteq \operatorname{Fun}( \Delta ^1, X)$ be the full simplicial subset of $\operatorname{Fun}( \Delta ^1, X)$ spanned by those edges $e: \Delta ^1 \rightarrow X$ which are $q$-cartesian (see Definition 4.1.2.17). Let $\theta : Y \rightarrow \operatorname{Fun}( \Delta ^1, S) \times _{ \operatorname{Fun}( \{ 1\} , S) } \operatorname{Fun}( \{ 1\} , X)$ denote the restriction map, and let $Z \subseteq \operatorname{Fun}( \Delta ^1, S) \times _{ \operatorname{Fun}(\{ 1\} , S) } \operatorname{Fun}(\{ 1\} , X)$ be the full simplicial subset spanned by those vertices which belong to the image of $\theta $. Then $\theta : Y \rightarrow Z$ is a trivial Kan fibration of simplicial sets.
Proof of Proposition 5.2.1.3. Let $n > 0$ be an integer; we wish to show that every lifting problem of the form
admits a solution. Unwinding the definitions, we can rephrase (5.11) as a lifting problem
where the morphism $h_0$ has the property that $h_0|_{ \Delta ^1 \times \{ i\} }$ is a $q$-cartesian edge of $X$ for $0 \leq i \leq n$. Let
be the sequence of simplicial subsets appearing in the proof of Lemma 3.1.2.12, so that $h_0$ can be identified with a morphism of simplicial sets from $Y(0)$ to $X$. We will show that, for $0 \leq j \leq n+1$, there exists a morphism of simplicial sets $h_ j: Y(j) \rightarrow X$ satisfying $h_ j|_{Y(0)} = h_0$ and $q \circ h_ j = \overline{h}|_{ Y(j)}$ (taking $j = n+1$, this will complete the proof of Proposition 5.2.1.3). We proceed by induction on $j$, the case $j=0$ being vacuous. Assume that $j > 0$ and that we have already constructed a morphism $h_{j-1}: Y(j-1) \rightarrow X$ satisfying $h_{j-1}|_{Y(0)} = h_0$ and $q \circ h_{j-1} = \overline{h}|_{ Y(j-1)}$. By virtue of Lemma 3.1.2.12, we have a pushout diagram of simplicial sets
Consequently, to prove the existence of $h_{i}$, it suffices to solve the lifting problem
For $0 < j < n+1$, the existence of the desired solution follows from our assumption that $q$ is an inner fibration. In the case $j = n+1$, the existence follows from the fact that the composite map
is the edge of $X$ given by the restriction $h_0|_{ \Delta ^1 \times \{ n\} }$, and is therefore $q$-cartesian. $\square$