Remark 5.4.2.3. Let $\operatorname{\mathcal{D}}$ be an $(\infty ,2)$-category and let $q: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a morphism of simplicial sets. Then $q$ is an interior fibration if and only if the opposite morphism $q^{\operatorname{op}}: \operatorname{\mathcal{C}}^{\operatorname{op}} \rightarrow \operatorname{\mathcal{D}}^{\operatorname{op}}$ is an interior fibration.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$