Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 5.4.5.3. Let $\operatorname{\mathcal{C}}$ be an $(\infty ,2)$-category. Then $\operatorname{Pith}(\operatorname{\mathcal{C}})$ is the largest simplicial subset of $\operatorname{\mathcal{C}}$ which does not contain any non-thin $2$-simplices of $\operatorname{\mathcal{C}}$.