Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 5.4.8.6 (Functoriality). Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of simplicial categories. Assume that:

  • For every pair of objects $C,C' \in \operatorname{\mathcal{C}}$, the simplicial set $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(C,C')_{\bullet }$ is an $\infty $-category.

  • For every pair of objects $D,D' \in \operatorname{\mathcal{D}}$, the simplicial set $\operatorname{Hom}_{\operatorname{\mathcal{D}}}(D,D')_{\bullet }$ is an $\infty $-category.

Then the induced map $\operatorname{N}_{\bullet }^{\operatorname{hc}}(F): \operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{D}})$ is a functor of $(\infty ,2)$-categories: that is, it carries thin $2$-simplices of $\operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{C}})$ to thin $2$-simplices of $\operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{D}})$.

Proof. It follows from Theorem 5.4.8.1 that the simplicial sets $\operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{C}})$ and $\operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{D}})$ are $(\infty ,2)$-categories. We will show that the morphism $\operatorname{N}_{\bullet }^{\operatorname{hc}}(F)$ is a functor by verifying the criterion of Proposition 5.4.7.8. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be morphisms in the category $\operatorname{\mathcal{C}}$ (or, equivalently, in the $(\infty ,2)$-category $\operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{C}})$). Then $f$ and $g$ determine a $2$-simplex of the nerve $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$, which we identify with $2$-simplex $\sigma $ of the homotopy coherent nerve $\operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{C}})$ (see Remark 2.4.3.8). By virtue of Example 5.4.8.3, $\sigma $ is a thin $2$-simplex of $\operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{C}})$ and its image $\operatorname{N}_{\bullet }^{\operatorname{hc}}(F)(\sigma )$ is a thin $2$-simplex of $\operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{D}})$. $\square$