Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Example 4.3.6.5. Let $f: A \hookrightarrow A'$ be a right anodyne morphism of simplicial sets. Applying Proposition 4.3.6.4 to the inclusion $\emptyset \hookrightarrow \Delta ^0$, we deduce that the natural map $A^{\triangleright } \coprod _{A} A' \hookrightarrow A'^{\triangleright }$ is inner anodyne. Similarly, if $g: B \hookrightarrow B'$ is left anodyne, the induced map $ B' \coprod _{B} B^{\triangleleft } \rightarrow B'^{\triangleleft }$ is inner anodyne.