Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 5.2.3.11. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{E}}$ and $G: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{E}}$ be functors of $\infty $-categories. Then the relative join $\operatorname{\mathcal{C}}\star _{\operatorname{\mathcal{E}}} \operatorname{\mathcal{D}}$ is an $\infty $-category.

Proof of Proposition 5.2.3.11. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{E}}$ and $G: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{E}}$ be functors of $\infty $-categories. Applying Lemma 5.2.3.13, we see that the natural map

\[ \operatorname{\mathcal{C}}\star _{\operatorname{\mathcal{E}}} \operatorname{\mathcal{D}}\rightarrow \Delta ^0 \star _{\Delta ^0} \Delta ^0 \simeq \Delta ^1 \]

is an inner fibration of simplicial sets. Since $\Delta ^1$ is an $\infty $-category, it follows that $\operatorname{\mathcal{C}}\star _{\operatorname{\mathcal{E}}} \operatorname{\mathcal{D}}$ is also an $\infty $-category (Remark 4.1.1.9). $\square$