Remark 5.2.3.14 (Morphism Spaces in the Relative Join). Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{E}}$ and $G: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{E}}$ be morphisms of simplicial sets. If $X$ and $Y$ are vertices of the relative join $\operatorname{\mathcal{C}}\star _{\operatorname{\mathcal{E}}} \operatorname{\mathcal{D}}$, then we have canonical isomorphisms of simplicial sets
The pinched morphism spaces $\operatorname{Hom}^{\mathrm{L}}_{\operatorname{\mathcal{C}}\star _{\operatorname{\mathcal{E}}} \operatorname{\mathcal{D}}}( X, Y)$ and $\operatorname{Hom}^{\mathrm{R}}_{\operatorname{\mathcal{C}}\star _{\operatorname{\mathcal{E}}} \operatorname{\mathcal{D}}}( X, Y)$ admit similar descriptions.