# Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$

Exercise 5.2.4.20. Suppose we are given a finite sequence of $\infty$-categories $\{ \operatorname{\mathcal{E}}(m) \} _{0 \leq im \leq n}$ and functors

$\operatorname{\mathcal{E}}(0) \xrightarrow { F(1) } \operatorname{\mathcal{E}}(1) \xrightarrow { F(2) } \operatorname{\mathcal{E}}(2) \rightarrow \cdots \xrightarrow {F(n)} \operatorname{\mathcal{E}}(n).$

Let $\operatorname{\mathcal{E}}$ denote the iterated relative join

$((( \operatorname{\mathcal{E}}(0) \star _{\operatorname{\mathcal{E}}(1)} \operatorname{\mathcal{E}}(1) ) \star _{\operatorname{\mathcal{E}}(2)} \operatorname{\mathcal{E}}(2)) \star \cdots ) \star _{\operatorname{\mathcal{E}}(n)} \operatorname{\mathcal{E}}(n).$

Show that the associated projection map $U: \operatorname{\mathcal{E}}\rightarrow \Delta ^ n$ is a cocartesian fibration whose homotopy transport representation $\operatorname{hTr}_{U}: [n] \rightarrow \mathrm{h} \mathit{\operatorname{QCat}}$ is the diagram

$\operatorname{\mathcal{E}}(0) \xrightarrow { [F(1)] } \operatorname{\mathcal{E}}(1) \xrightarrow { [F(2)] } \operatorname{\mathcal{E}}(2) \rightarrow \cdots \xrightarrow {[F(n)]} \operatorname{\mathcal{E}}(n).$

For a more general statement, see Proposition 5.5.3.13 and Remark 5.5.3.15.