Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 5.2.6.20. Let $\pi : \operatorname{\mathcal{C}}\rightarrow \Delta ^ n$ be a cocartesian fibration of $\infty $-categories. It follows from Proposition 5.2.6.19 that $\operatorname{\mathcal{C}}$ is determined, up to equivalence, by the diagram of covariant transport functors

\[ \operatorname{\mathcal{C}}(0) \xrightarrow {F(1)} \operatorname{\mathcal{C}}(1) \xrightarrow {F(2)} \operatorname{\mathcal{C}}(2) \xrightarrow {F(3)} \cdots \xrightarrow {F(n)} \operatorname{\mathcal{C}}(n). \]