Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 5.6.1.17. In ยง5.6.5, we will prove a converse to Corollary 5.6.1.16: for every cocartesian fibration of categories $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$, there exists a functor of $2$-categories $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \mathbf{Cat}$ and an isomorphism of categories $\int _{\operatorname{\mathcal{C}}} \mathscr {F} \simeq \operatorname{\mathcal{E}}$ whose composition with $U$ is the forgetful functor of Notation 5.6.1.11. See Corollary 5.6.5.21.