Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Warning 5.5.4.11. Let $\operatorname{\mathcal{C}}$ be an $(\infty ,2)$-category and let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{ \pmb {\mathcal{QC}} }$ be a morphism of simplicial sets. If $\mathscr {F}$ is not a functor, then $\int _{\operatorname{\mathcal{C}}} \mathscr {F}$ need not be an $(\infty ,2)$-category (this phenomenon arises already in the case $\operatorname{\mathcal{C}}= \Delta ^2$).