Construction 5.6.4.1 (The Comparison Map). Let $\operatorname{\mathcal{C}}$ be a category and let $\overrightarrow {C}$ be an $n$-simplex of the nerve $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$, given by a diagram
in the category $\operatorname{\mathcal{C}}$. Let $\mathscr {F}$ be a functor from $\operatorname{\mathcal{C}}$ to the category of simplicial sets and suppose that we are given a collection of simplices $\overrightarrow {\sigma } = \{ \sigma _{j}: \Delta ^{j} \rightarrow \mathscr {F}(C_ j) \} _{0 \leq j \leq n}$ which fit into a commutative diagram
To this data, we can associate a commutative diagram of simplicial sets
where the upper horizontal map is given by the simplicial functor
described as follows:
The functor $F$ carries $x$ to the simplicial set $\Delta ^{0}$ (so that $F$ can be identified with an $n$-simplex of the coslice simplicial set $\operatorname{N}_{\bullet }^{\operatorname{hc}}( \operatorname{Set_{\Delta }})_{\Delta ^{0}/}$).
The restriction of $F$ to the simplicial path category $\operatorname{Path}[n]_{\bullet }$ is given by the composition
\[ \operatorname{Path}[n]_{\bullet } \rightarrow [n] \xrightarrow { \overrightarrow {C}} \operatorname{\mathcal{C}}\xrightarrow { \mathscr {F}} \operatorname{Set_{\Delta }} \](as required by the commutativity of the diagram (5.58)).
For $0 \leq m \leq n$, the induced map of simplicial sets
\[ \operatorname{Hom}_{\operatorname{Path}[ \{ x\} \star [n] ]}( x, m)_{\bullet } \rightarrow \operatorname{Hom}_{\operatorname{Set_{\Delta }}}( F(x), F(m) )_{\bullet } = \mathscr {F}( C_ m ) \]is given by the composition $\operatorname{Hom}_{ \operatorname{Path}[ \{ x\} \star [n] ] }( x, m )_{\bullet } \xrightarrow {\rho } \Delta ^{m} \xrightarrow { \sigma _ m} \mathscr {F}(C_ m)$, where $\rho $ is induced by the morphism of partially ordered sets
\[ \operatorname{Hom}_{ \operatorname{Path}[ \{ x\} \star [n] ]}(x,m) \rightarrow [m] \quad \quad (S \subseteq \{ x\} \star [n] ) \mapsto \min ( S \setminus \{ x\} ). \]
Note that we can identify the diagram (5.58) with an $n$-simplex $\theta ( \overrightarrow {C}, \overrightarrow {\sigma } )$ of the simplicial set $\int _{ \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) } \operatorname{N}_{\bullet }^{\operatorname{hc}}(\mathscr {F})$. The construction $(\overrightarrow {C}, \overrightarrow {\sigma }) \mapsto \theta ( \overrightarrow {C}, \overrightarrow {\sigma } )$ then determines a morphism of simplicial sets $\theta : \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}}) \rightarrow \int _{ \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) } \operatorname{N}_{\bullet }^{\operatorname{hc}}(\mathscr {F})$, which we will refer to as the comparison map.