Proposition 5.6.4.8. Let $\operatorname{\mathcal{C}}$ be a category equipped with a functor $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{QCat}$, and let
be the commutative diagram of Remark 5.6.4.6. Then:
- $(1)$
For each object $C \in \operatorname{\mathcal{C}}$, the morphism $\theta $ induces an equivalence of $\infty $-categories
\[ \theta _{C}: \{ C\} \times _{\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})} \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}}) \rightarrow \{ C\} \times _{ \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) } \int _{ \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) } \operatorname{N}_{\bullet }^{\operatorname{hc}}(\mathscr {F}). \]- $(2)$
A morphism $f$ of the weighted nerve $\operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}})$ is $U$-cocartesian if and only if $\theta (f)$ is a $U'$-cocartesian morphism of the $\infty $-category $\int _{ \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})} \operatorname{N}_{\bullet }^{\operatorname{hc}}(\mathscr {F})$.
- $(3)$
The functor $\theta $ is an equivalence of $\infty $-categories.