Example 11.5.0.90. Let $\operatorname{\mathcal{Q}}$ be a full subcategory of $\operatorname{\mathcal{QC}}$, and let $\widetilde{\operatorname{\mathcal{Q}}}$ denote the fiber product $\operatorname{\mathcal{Q}}\times _{ \operatorname{\mathcal{QC}}} \operatorname{\mathcal{QC}}_{\operatorname{Obj}}$: that is, the $\infty $-category of elements of the inclusion map $\operatorname{\mathcal{Q}}\hookrightarrow \operatorname{\mathcal{QC}}$. Then the projection map $V: \widetilde{\operatorname{\mathcal{Q}}} \rightarrow \operatorname{\mathcal{Q}}$ is a $\operatorname{\mathcal{Q}}$-small cocartesian fibration of $\infty $-categories. This follows from Example 5.6.2.19: for every object $Q \in \operatorname{\mathcal{Q}}$, the fiber $\{ Q\} \times _{ \operatorname{\mathcal{Q}}} \widetilde{\operatorname{\mathcal{Q}}}$ is an $\infty $-category equivalent to $Q$.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$