Remark 5.6.5.11. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of simplicial sets and let $\mathscr {F}, \mathscr {F}': \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}$ be morphisms which are isomorphic as objects of the diagram $\infty $-category $\operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{QC}})$. Then $\mathscr {F}$ is a covariant transport representation of $U$ if and only if $\mathscr {F}'$ is a covariant transport representation of $U$. This follows immediately from Proposition 5.6.2.21.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$