Proposition 2.2.8.3. Let $\operatorname{\mathcal{C}}$ be a $2$-category and let $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ be the ordinary category of Construction 2.2.8.2, regarded as a $2$-category having only identity $2$-morphisms. Then there is a unique functor of $2$-categories $F: \operatorname{\mathcal{C}}\rightarrow \mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ with the following properties:
The functor $F$ carries each object of $\operatorname{\mathcal{C}}$ to itself (regarded as an object of $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$).
The functor $F$ carries each $1$-morphism $u: X \rightarrow Y$ of $\operatorname{\mathcal{C}}$ to the connected component of $u$, regarded as a vertex of the nerve $\operatorname{N}_{\bullet }( \underline{\operatorname{Hom}}_{\operatorname{\mathcal{C}}}(X,Y) )$.
Moreover, the functor $F$ exhibits $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ as a coarse homotopy category of $\operatorname{\mathcal{C}}$, in the sense of Definition 2.2.8.1.