# Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$

Construction 4.5.1.23 (The Homotopy $2$-Category of $\infty$-Categories). We define a strict $2$-category $\mathrm{h}_{2} \mathit{\operatorname{\mathbf{QCat}}}$ as follows:

• The objects of $\mathrm{h}_{2} \mathit{\operatorname{\mathbf{QCat}}}$ are $\infty$-categories.

• If $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ are $\infty$-categories, then $\underline{\operatorname{Hom}}_{\mathrm{h}_{2} \mathit{\operatorname{\mathbf{QCat}}} }(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}}) = \mathrm{h} \mathit{\operatorname{Fun}(\operatorname{\mathcal{C}},\operatorname{\mathcal{D}})}$ is the homotopy category of the functor $\infty$-category $\operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$.

• If $\operatorname{\mathcal{C}}$, $\operatorname{\mathcal{D}}$, and $\operatorname{\mathcal{E}}$ are $\infty$-categories, then the composition law on $\mathrm{h}_{2} \mathit{\operatorname{\mathbf{QCat}}}$ is given by

\begin{eqnarray*} \underline{\operatorname{Hom}}_{\mathrm{h}_{2} \mathit{\operatorname{\mathbf{QCat}}}}( \operatorname{\mathcal{D}}, \operatorname{\mathcal{E}}) \times \underline{\operatorname{Hom}}_{\mathrm{h}_{2} \mathit{\operatorname{\mathbf{QCat}}}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{D}}) & = & (\mathrm{h} \mathit{\operatorname{Fun}(\operatorname{\mathcal{D}},\operatorname{\mathcal{E}})}) \times (\mathrm{h} \mathit{\operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})}) \\ & \simeq & \mathrm{h} \mathit{(\operatorname{Fun}(\operatorname{\mathcal{D}},\operatorname{\mathcal{E}}) \times \operatorname{Fun}(\operatorname{\mathcal{C}},\operatorname{\mathcal{D}}))} \\ & \xrightarrow {\circ } & \mathrm{h} \mathit{\operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})} \\ & = & \underline{\operatorname{Hom}}_{\mathrm{h}_{2} \mathit{\operatorname{\mathbf{QCat}}}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}). \end{eqnarray*}

We will refer to $\mathrm{h}_{2} \mathit{\operatorname{\mathbf{QCat}}}$ as the homotopy $2$-category of $\infty$-categories. We let $\mathrm{h}_{2} \mathit{\operatorname{QCat}}$ denote the pith $\mathrm{h}_{2} \mathit{\operatorname{\mathbf{QCat}}}$, in the sense of Construction 2.2.8.9; we will refer to $\mathrm{h}_{2} \mathit{\operatorname{QCat}}$ as the homotopy $(2,1)$-category of $\infty$-categories.