Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 4.5.1.26. Let $\mathbf{Cat}$ denote the (strict) $2$-category of categories (see Example 2.2.0.4). The construction $\operatorname{\mathcal{C}}\mapsto \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ defines an isomorphism from $\mathbf{Cat}$ to the full subcategory of $\mathrm{h}_{2} \mathit{\operatorname{\mathbf{QCat}}}$ spanned by those objects of the form $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$, where $\operatorname{\mathcal{C}}$ is a (small) category.