$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$

Variant Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $W$ be a collection of morphisms of $\operatorname{\mathcal{C}}$ which is colocalizing, and let $\operatorname{\mathcal{C}}'$ denote the full subcategory of $\operatorname{\mathcal{C}}$ spanned by the $W$-colocal objects. Then:


The full subcategory $\operatorname{\mathcal{C}}' \subseteq \operatorname{\mathcal{C}}$ is coreflective.


Let $L: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{C}}'$ be a right adjoint to the inclusion functor $\iota : \operatorname{\mathcal{C}}' \hookrightarrow \operatorname{\mathcal{C}}$. Then $L$ exhibits $\operatorname{\mathcal{C}}'$ as a localization of $\operatorname{\mathcal{C}}$ with respect to $W$.


A morphism $f: X \rightarrow Y$ of $\operatorname{\mathcal{C}}$ belongs to $W$ if and only if $L(f)$ is an isomorphism in the $\infty $-category $\operatorname{\mathcal{C}}'$.