Definition 11.5.0.82. Let $\operatorname{\mathcal{C}}$ be a category. An initial object of $\operatorname{\mathcal{C}}$ is an object $Y \in \operatorname{\mathcal{C}}$ with the property that, for every object $Z \in \operatorname{\mathcal{C}}$, there is a unique morphism $Y \rightarrow Z$: that is, the set $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(Y,Z)$ has exactly one element. A final object of $\operatorname{\mathcal{C}}$ is an object $Y \in \operatorname{\mathcal{C}}$ with the property that, for every object $X \in \operatorname{\mathcal{C}}$, the set $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$ has exactly one element.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$