$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$
Corollary 4.6.7.11. Let $X$ be a Kan complex and let $x \in X$ be a vertex. The following conditions are equivalent:
- $(1)$
The vertex $x$ is initial when viewed as an object of the $\infty $-category $X$.
- $(2)$
The vertex $x$ is final when viewed as an object of the $\infty $-category $X$.
- $(3)$
The Kan complex $X$ is contractible.
In particular, these conditions are independent of the choice of vertex $x \in X$.
Proof.
If the Kan complex $X$ is contractible, then the projection map $X_{x/} \rightarrow X$ is a trivial Kan fibration (Corollary 4.3.7.19), so the object $x \in X$ is initial by virtue of Proposition 4.6.7.10. Conversely, if the projection map $X_{x/} \rightarrow X$ is a trivial Kan fibration, then it is a homotopy equivalence (Proposition 3.1.6.10). Since the Kan complex $X_{x/}$ is contractible (Corollary 4.3.7.14), it follows that $X$ is contractible. This proves the equivalence of $(1)$ and $(3)$; the equivalence of $(2)$ and $(3)$ follows by a similar argument.
$\square$