Corollary 4.6.7.24. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $Y$ be an object of $\operatorname{\mathcal{C}}$. The following conditions are equivalent:
- $(1)$
The object $Y \in \operatorname{\mathcal{C}}$ is final.
- $(2)$
There exists a functor $F: \operatorname{\mathcal{C}}^{\triangleright } \rightarrow \operatorname{\mathcal{C}}$ satisfying $F|_{\operatorname{\mathcal{C}}} = \operatorname{id}_{\operatorname{\mathcal{C}}}$ and for which the composition
\[ \Delta ^1 \simeq \{ Y\} ^{\triangleright } \hookrightarrow \operatorname{\mathcal{C}}^{\triangleright } \xrightarrow {F} \operatorname{\mathcal{C}} \]is the identity morphism $\operatorname{id}_{Y}$ (in particular, $F$ carries the cone point of $\operatorname{\mathcal{C}}^{\triangleright }$ to the object $Y$).
- $(3)$
The inclusion map $\{ Y\} \hookrightarrow \operatorname{\mathcal{C}}$ is right anodyne.