Definition 3.2.4.5. Let $f: X \rightarrow Y$ be a morphism of simplicial sets. We will say that $f$ is nullhomotopic if there exists a vertex $y \in Y$ for which $f$ is homotopic to the constant morphism $X \rightarrow \{ y\} \hookrightarrow Y$.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$