Remark 4.5.1.15. Let $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ be $\infty $-categories, and let $F,G: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be functors which are isomorphic when regarded as objects of $\operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$. Then $F$ is an equivalence of $\infty $-categories if and only if $G$ is an equivalence of $\infty $-categories.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$