Example 2.4.2.2 (Functor Categories). Let $\operatorname{\mathcal{C}}$ be a category and let $Y: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ be a functor. For every simplicial set $K$, we let $Y^{K}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ denote the functor given on objects by the formula $Y^{K}(C) = \operatorname{Fun}( K, Y(C) )$. If $X: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ is another functor, we let $\operatorname{Hom}_{ \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{Set_{\Delta }})}( X, Y)_{\bullet }$ denote the simplicial set given by the functor
Together with the evident composition maps
this construction endows $\operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{Set_{\Delta }})$ with the structure of a simplicial category.