Example 5.6.0.7. Let $\operatorname{\mathcal{C}}$ be a locally small $\infty $-category and let $X$ be an object of $\operatorname{\mathcal{C}}$. It follows from Corollary 5.6.0.6 that there is an essentially unique functor $h^{X}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{S}}$ for $\int _{\operatorname{\mathcal{C}}} h^{X}$ is equivalent to $\operatorname{\mathcal{C}}_{X/}$ as left fibrations over $\operatorname{\mathcal{C}}$. We will refer to $h^{X}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{S}}$ as the functor corepresented by $X$. For every object $Y \in \operatorname{\mathcal{C}}$, we have isomorphisms
in the homotopy category $\mathrm{h} \mathit{\operatorname{Kan}}$, depending functorially on $Y$. In ยง5.6.6, we will show that this property characterizes the functor $h^{X}$ up to isomorphism (Theorem 5.6.6.13).