Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 9.5.0.2. In the statement of Theorem 5.7.6.13, we can replace the smallness assumption on $\operatorname{\mathcal{C}}$ by the weaker assumption that for every object $Y \in \operatorname{\mathcal{C}}$, the Kan complex $\operatorname{Hom}_{\operatorname{\mathcal{C}}}( X, Y)$ is essentially small. Note that this latter condition cannot be omitted: if $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{S}}$ is corepresentable by $X$, then $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X,Y)$ is homotopy equivalent to the small Kan complex $\mathscr {F}(Y)$.