Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Variant 9.1.6.8. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories. The following conditions are equivalent:

$(1)$

The functor $F$ preserves small filtered colimits.

$(2)$

For every small filtered category $\operatorname{\mathcal{K}}$, the functor $F$ preserves $\operatorname{N}_{\bullet }(\operatorname{\mathcal{K}})$-indexed colimits.

$(3)$

For every small directed partially ordered set $(A, \leq )$, the functor $F$ preserves $\operatorname{N}_{\bullet }(A)$-indexed colimits.