Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Theorem 11.9.1.1. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of simplicial sets. Suppose that, for every object $C \in \operatorname{\mathcal{C}}$, the $\infty $-category $\operatorname{\mathcal{E}}_{C} = \operatorname{\mathcal{E}}\times _{\operatorname{\mathcal{C}}} \{ C\} $ has an initial object. Then the $\infty $-category $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}( \operatorname{Tw}(\operatorname{\mathcal{C}}), \operatorname{\mathcal{E}})$ has an initial object. Moreover, an object $F \in \operatorname{Fun}_{ / \operatorname{\mathcal{C}}}( \operatorname{Tw}(\operatorname{\mathcal{C}}), \operatorname{\mathcal{E}})$ is initial if and only if it satisfies the following pair of conditions:

$(1)$

For every vertex $C \in \operatorname{\mathcal{C}}$, the image $F( \operatorname{id}_ C )$ is an initial object of the $\infty $-category $\operatorname{\mathcal{E}}_ C$.

$(2)$

Let $e$ be an edge of $\operatorname{Tw}(\operatorname{\mathcal{C}})$ having the property that $\lambda _{-}(e)$ is a degenerate edge of $\operatorname{\mathcal{C}}^{\operatorname{op}}$. Then $F(e)$ is a $U$-cocartesian edge of $\operatorname{\mathcal{E}}$.

Proof of Theorem 11.9.1.1. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of simplicial sets. Suppose that, for every object $C \in \operatorname{\mathcal{C}}$, the $\infty $-category $\operatorname{\mathcal{E}}_{C}$ has an initial object. Applying Lemma 11.9.1.7, we see that there exists an object $F \in \operatorname{Fun}_{ / \operatorname{\mathcal{C}}}( \operatorname{Tw}(\operatorname{\mathcal{C}}), \operatorname{\mathcal{E}})$ satisfying conditions $(1)$ and $(2)$ of Theorem 11.9.1.1. Moreover, any object satisfying these conditions is initial in $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}( \operatorname{Tw}(\operatorname{\mathcal{C}}), \operatorname{\mathcal{E}})$ (Lemma 11.9.1.6). To complete the proof, we must prove the converse: if $F'$ is an initial object $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}( \operatorname{Tw}(\operatorname{\mathcal{C}}), \operatorname{\mathcal{E}})$, then $F'$ also satisfies conditions $(1)$ and $(2)$. This follows from Remark 11.9.1.3, since $F'$ is isomorphic to $F$ (Corollary 4.6.7.15). $\square$