Remark 5.3.1.12. Suppose we are given a commutative diagram of simplicial sets
where $U$ and $U'$ are cocartesian fibrations. Let $e: X \rightarrow Y$ be an edge of $\operatorname{\mathcal{C}}$. The following conditions are equivalent:
- $(1)$
For every $U'$-cocartesian edge $\widetilde{e}: \widetilde{X} \rightarrow \widetilde{Y}$ of $\operatorname{\mathcal{E}}'$ satisfying $U'( \widetilde{e} ) = e$, the image $F( \widetilde{e} )$ is a $U$-cocartesian edge of $\operatorname{\mathcal{E}}$.
- $(2)$
For every vertex $\widetilde{X}$ of $\operatorname{\mathcal{E}}'$ satisfying $U'( \widetilde{X} ) = X$, there exists a $U'$-cocartesian edge $\widetilde{e}: \widetilde{X} \rightarrow \widetilde{Y}$ of $\operatorname{\mathcal{E}}'$ such that $F( \widetilde{e} )$ is $U$-cocartesian and $U'( \widetilde{e} ) = e$.
The implication $(1) \Rightarrow (2)$ is immediate from the definitions, and the implication $(2) \Rightarrow (1)$ follows from Remark 5.1.3.8.
Let $W$ be the collection of edges of $\operatorname{\mathcal{C}}$ which satisfy these conditions. Then $W$ contains all degenerate edges of $\operatorname{\mathcal{C}}$ and is closed under composition: that is, for every $2$-simplex
of $\operatorname{\mathcal{C}}$, if $e$ and $e'$ belong to $W$, then $e''$ also belongs to $W$ (see Proposition 5.1.4.13).