Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 11.5.0.26. Let $F: \operatorname{\mathcal{D}}' \rightarrow \operatorname{\mathcal{D}}$ and $G: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{C}}$ be functors of $\infty $-categories, let $\mathscr {K}: \operatorname{\mathcal{C}}^{\operatorname{op}} \times \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{S}}$ be a profunctor from $\operatorname{\mathcal{D}}$ to $\operatorname{\mathcal{C}}$, and let $\mathscr {K}'$ denote the composition

\[ \operatorname{\mathcal{C}}^{\operatorname{op}} \times \operatorname{\mathcal{D}}' \xrightarrow {\operatorname{id}\times F} \operatorname{\mathcal{C}}^{\operatorname{op}} \times \operatorname{\mathcal{D}}\xrightarrow { \mathscr {K} } \operatorname{\mathcal{S}}, \]

which we regard as a profunctor from $\operatorname{\mathcal{D}}'$ to $\operatorname{\mathcal{C}}$. If $\beta : \underline{ \Delta ^0 } \rightarrow \mathscr {K}|_{ \operatorname{Tw}( \operatorname{\mathcal{D}})}$ is a natural transformation which exhibits $\mathscr {K}$ as represented by $G$, then the restriction $\beta |_{ \operatorname{Tw}( \operatorname{\mathcal{D}}' )}$ exhibits $\mathscr {K}'$ as represented by $G \circ F$.