Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Definition 4.7.3.20. Let $\kappa $ be an infinite cardinal. We say that $\kappa $ is strongly inaccessible if $\kappa = \mathrm{ecf}(\kappa )$. In other words, $\kappa $ is strongly inaccessible if the collection of $\kappa $-small sets is closed under the formation of $\kappa $-small products.