Definition 4.7.4.1. Let $\kappa $ be an infinite cardinal. We say that a simplicial set $S$ is $\kappa $-small if the collection of nondegenerate simplices of $S$ is $\kappa $-small.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$
Definition 4.7.4.1. Let $\kappa $ be an infinite cardinal. We say that a simplicial set $S$ is $\kappa $-small if the collection of nondegenerate simplices of $S$ is $\kappa $-small.