Remark 4.7.4.3. Let $\kappa $ be an infinite cardinal. Then a simplicial set $S$ is $\kappa $-small if and only if the opposite simplicial set $S^{\operatorname{op}}$ is $\kappa $-small.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$
Remark 4.7.4.3. Let $\kappa $ be an infinite cardinal. Then a simplicial set $S$ is $\kappa $-small if and only if the opposite simplicial set $S^{\operatorname{op}}$ is $\kappa $-small.