Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 5.6.7.7. Let $\kappa $ be an uncountable regular cardinal, let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration of simplicial sets, and suppose that $\operatorname{\mathcal{C}}$ is essentially $\kappa $-small. The following conditions are equivalent:

$(1)$

The simplicial set $\operatorname{\mathcal{E}}$ is essentially $\kappa $-small.

$(2)$

For every vertex $C \in \operatorname{\mathcal{C}}$, the $\infty $-category $\operatorname{\mathcal{E}}_{C} = \{ C\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$ is essentially $\kappa $-small.

Proof. Using Corollaries 5.6.7.3 and 5.6.7.6, we can reduce to the situation where $\operatorname{\mathcal{C}}$ is an $\infty $-category. In this case, the desired result is a special case of Corollary 5.1.5.16. $\square$