Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Variant 1.3.1.6. Let $\operatorname{\mathcal{C}}$ be a category. For every integer $n \geq 0$, we let $\operatorname{N}_{\leq n}(\operatorname{\mathcal{C}})$ denote the $n$-skeleton of the simplicial set $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$. In the special case $n = 0$, this recovers the discrete simplicial set associated to the set of objects $\operatorname{Ob}(\operatorname{\mathcal{C}})$ (Example 1.3.1.4).