Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 5.3.3.18. Let $\operatorname{\mathcal{C}}$ be a category and let $\alpha : \mathscr {F} \rightarrow \mathscr {G}$ be a natural transformation between functors $\mathscr {F}, \mathscr {G}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$. Suppose that, for every object $C \in \operatorname{\mathcal{C}}$, the morphism $\alpha _{C}: \mathscr {F}(C) \rightarrow \mathscr {G}(C)$ is a left fibration of simplicial sets. Then the induced map $U: \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }^{\mathscr {G}}(\operatorname{\mathcal{C}})$ is also a left fibration of simplicial sets.