Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 3.5.1.14. Suppose we are given a diagram of Kan complexes

\[ \xymatrix@R =50pt@C=50pt{ X' \ar [d]^{f'} \ar [r] & X \ar [d]^{f} \\ Y' \ar [r] & Y } \]

which commutes up to homotopy. If the horizontal maps are homotopy equivalences, then $f$ is $n$-connective if and only if $f'$ is $n$-connective.