Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 3.6.5.4. Let $f: Y \rightarrow Z$ be a continuous function between topological spaces. The following conditions are equivalent:

$(1)$

The function $f$ is a weak homotopy equivalence (Definition 3.6.3.1).

$(2)$

For every simplicial set $S$, the induced map $\operatorname{Fun}( S, \operatorname{Sing}_{\bullet }(Y) ) \rightarrow \operatorname{Fun}(S, \operatorname{Sing}_{\bullet }(Z) )$ is a homotopy equivalence of Kan complexes.

$(3)$

For every simplicial set $S$, the induced map $\operatorname{Hom}_{\operatorname{Top}}( |S|, Y)_{\bullet } \rightarrow \operatorname{Hom}_{ \operatorname{Top}}( |S|, Z)_{\bullet }$ is a homotopy equivalence of Kan complexes.

$(4)$

For every topological space $X$ which has the homotopy type of a CW complex, the induced map $\operatorname{Hom}_{\operatorname{Top}}( X, Y)_{\bullet } \rightarrow \operatorname{Hom}_{ \operatorname{Top}}( X, Z)_{\bullet }$ is a homotopy equivalence of Kan complexes.

Proof. The equivalence $(1) \Leftrightarrow (2)$ follows from Proposition 3.1.6.17, the equivalence $(2) \Leftrightarrow (3)$ from Example 3.6.2.5, and the equivalence $(3) \Leftrightarrow (4)$ from Proposition 3.6.5.3. $\square$