Construction 4.6.6.4. Let $f_{\pm }: K_{-} \star K_{+} \rightarrow \operatorname{\mathcal{C}}$ be a morphism of simplicial sets, and set $f_{-} = f_{\pm }|_{K_{-}}$ and $f_{+} = f_{\pm }|_{ K_{+} }$. Let $K$ be another simplicial set, set $M = \operatorname{Fun}(K, \operatorname{\mathcal{C}}_{ f_{-} / \, /f_{+} } )$. Let $\operatorname{ev}: M \times K \rightarrow \operatorname{\mathcal{C}}_{ f_{-} / \, /f_{+} }$ be the evaluation map, and let $\pi _{-}: M \times K_{-} \rightarrow K_{-}$ and $\pi _{+}: M \times K_{+} \rightarrow K_{+}$ be given by projection onto the second factor. Then the composition
classifies a morphism of simplicial sets $M \rightarrow \operatorname{Fun}( K_{-} \star K \star K_{+}, \operatorname{\mathcal{C}})$, whose composition with the restriction map $\operatorname{Fun}( K_{-} \star K \star K_{+}, \operatorname{\mathcal{C}}) \rightarrow \operatorname{Fun}( K_{-} \star K_{+}, \operatorname{\mathcal{C}})$ is the constant map taking the value $f_{\pm }$. We therefore obtain a comparison map